/* --- RESPONSIVE --- */

Bayesian Nonparametric Data Analysis

Bayesian Nonparametric Data Analysis - Free Ebook Download

Book Detail

Author/Editor(s): Peter Müller, Fernando Andrés Quintana, Alejandro Jara, Tim Hanson
Publication Date: June 18, 2015
ISBN-10: 3319189670
ISBN-13: 978-3319189673
Language: English
Edition: 2015
Publisher: Springer
Size: 3.49 MB
Format: pdf

Book Description

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.

About the Author

Peter Mueller is Professor in the Department of Mathematics and the Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.

Fernando Andrés Quintana is Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile with interests in nonparametric Bayesian analysis and statistical computing. His publications include extensive work on clustering methods and applications in biostatistics.

Alejandro Jara is Associate Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile, with research interests in nonparametric Bayesian statistics, Markov chain Monte Carlo methods and statistical computing. He developed the R package "DPpackage," a widely used public domain set of programs for inference under nonparametric Bayesian models.

Timothy Hanson is Professor of Statistics in the Department of Statistics at the University of South Carolina. His research interests include survival analysis, nonparametric regression.
Buy Download

Links to Download or Buy

If you can afford, then please support the Author(s) by Buying the book. Thank You.

Sharing is Caring

All materials on this website is only for Educational Purposes and strictly for private use
Template Created by Creating Website - Proudly powered by Blogger
Copyright © 2016. 1001 Ebook - All Rights Reserved | DMCA | Privacy Policy
Support: 1001 Tutorial | IDFL | MKR Site | Mas Template | Become Friends